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Abstract. We apply ideas from renormalization theory to models of cluster formation in
nucleation and growth processes. We study a simple case of the Becker–Döring system of equations
and show how a novel coarse-graining procedure applied to the cluster aggregation space affects the
coagulation and fragmentation rate coefficients. A dynamical renormalization structure is found to
underlie the Becker–D̈oring equations, nine archetypal systems are identified, and their behaviour
is analysed in detail. These archetypal systems divide into three distinct groups: coagulation-
dominated systems, fragmentation-dominated systems and those systems where the two processes
are balanced. The dynamical behaviour obtained for these is found to be in agreement with certain
fine-grained solutions previously obtained by asymptotic methods. This work opens the way for the
application of renormalization ideas to a wide range of non-equilibrium physicochemical processes,
some of which we have previously modelled on the basis of the Becker–Döring equations.

1. Introduction

In this paper, we study the Becker–Döring cluster kinetic equations familiar from classical
nucleation theory [1] in which the monomer concentration (c1) is held constant

ċr = Jr−1− Jr (r > 2) Jr = arcrc1− br+1cr+1. (1)

Herecr represents the concentration of clusters containingr-monomers, the dot implies a time
derivative, andJr is the flux from clusters of sizer to those of sizer + 1. There are certain
mathematical properties of the Becker–Döring system not immediately apparent from the
equations but crucial to its wide-ranging physical applicability. Firstly, the partition function,
Qr , satisfiesarQr = br+1Qr+1 together withQ1 = 1 and formally yields the equilibrium
solutionceq

r = Qrc
r
1. The relevance of this solution depends on the behaviour ofQr in the

limit r →∞; further analysis of this is given in section 5, where specific examples are analysed
in detail. The function

V ({cr}) =
∞∑
r=1

cr

(
log

(
cr

Qrc
r
1

)
− 1

)
(2)

is monotonically decreasing and, provided it is bounded below, qualifies as a Lyapunov function
guaranteeing the convergence of arbitrary initial data to the equilibrium solution. We note that
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the density% = ∑∞r=1 rcr is not constant since monomers can be added to or removed from
the system. Finally, there is a ‘weak form’ for the first equality in (1)

∞∑
r=2

gr ċr = g1J1 +
∞∑
r=1

[gr+1− gr ]Jr . (3)

In the forthcoming analysis we assume initial conditions (cr(0)) which for large aggregation
numbers decay faster than any exponential inr.

2. Coarse graining of cluster aggregation space

We now perform a coarse-graining contraction of the infinite set of Becker–Döring equations
by systematically eliminating all the concentration variables except those which represent an
aggregation number3r , where

3r = (r − 1)λ + 1 r = 1, 2, 3, . . . . (4)

We then relabel the retained concentrations byxr = c3r . The reduced fluxes are

Lr = αrxrxλr1 − βr+1xr+1 (5)

αr = T a3r a3r+1 . . . a3r+1−1 (6)

βr+1 = T b3r+1b3r+2 . . . b3r+1 (7)

whereT is a constant which represents a change of timescale; the kinetic equations then reduce
to

ẋr = Lr−1− Lr (r > 2). (8)

This procedure is analogous to the Kadanoff block-spin renormalization procedure [5]; detailed
information for cluster sizes between the aggregation numbers3r is lost. For more details
of this procedure, see [3,8]. If the contracted system is to faithfully approximate the original
system, we require that the special mathematical properties mentioned above are preserved
under the coarse-grained rescaling. We can then draw on our renormalization procedure to
extract the structurally stable phenomena present in the system.

The physical properties of the full Becker–Döring system (1) are shared by the contracted
system (5)–(8): the partition function satisfiesαrQ3r = βr+1Q3r+1, hencexeq

r = Q3rx
3r
1 is

formally an equilibrium solution. The functionV ({xr}) =
∑∞

r=1 xr(log(xr/Q3r x
3r
1 )−1) has

the same properties as (2). The weak form (3) is still valid ifcr is replaced byxr andJr byLr .
Finally, the density in the system is now defined by

% = x1 + λ
∞∑
r=1

[(r − 1)λ + 1]xr . (9)

To apply renormalization ideas to this theory, we consider the repeated application of the
coarse-graining transformation (5)–(8), so we now reapply the contraction procedure with
mesh sizeµ. Defining new variablesz1 = x1, zr = x(r−1)µ+1, andIr as the flux fromzr to
zr+1, we find

żr = Ir−1− Ir (r > 2) Ir = Arzrzλµ1 − Br+1zr+1 (10)

with Ar, Br determined fromαr, βr in an analogous way to (6), (7). A similar set of physical
properties holds for this system of equations as for the original Becker–Döring equations.
Thus,a repetition of the coarse-grained contraction is identical to a single application with a
larger mesh parameterλµ. This shows that it is sufficient to consider a system of equations
which has undergone a single contraction with largeλ.
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3. The case of constant coefficients

Although ultimately a theory capable of handling arbitrary forms of rate coefficientsar and
br+1 is our goal, for the sake of simplicity let us start by considering constant coefficients—that
is ar = a, br = b. The parameterθ = ac1/b enables the system’s behaviour to be classified.
The cluster partition function is defined byQr = (a/b)r−1 and the forward coefficients in the
reduced model byαr = T aλ, βr+1 = T bλ. Thus the size-independent rate coefficientsar = a,
br = b are mapped to size-independent rate coefficients in the reduced model. This coarse-
graining mapsθ to θλ, leading to three fixed points,θ = 0, 1,∞. The large-time asymptotics
of systems with constant coefficients have been analysed in detail in [8], where it is shown
that theθ = 0 case converges to the equilibrium solution, theθ = ∞ case converges to the
steady-state solutionxr = x1 by a diffusive wave which moves through aggregation space in
such a way that its position is given byr = s(t) ∼ t , and theθ = 1 case converges to the
equilibrium solutionxr = x1 by purely diffusive means (xr ∼ x1 erfc(r/2

√
t)).

In [8] it is also shown that in order for the contracted system to preserve the correct
large-time asymptotics, the parameterT in (6), (7) should take the value

T = ac1− b
λ(aλcλ1 − bλ)

. (11)

This temporal rescaling implies that our renormalization isdynamic [5]. Following this
temporal rescaling, the large-time limit of the density of the original system withθ > 1
then scales with12c1(ac1 − b)t2, which is identical to the result given by the coarse-grained
system (9); and bothV ({cr}) of equation (2) andλV (x) scale with− 1

2c1(ac1− b)2t2 logθ .

4. The case of power-law rate coefficients

In many systems the reaction rates are not independent of size as assumed above, but rather
depend on the size of the cluster according to some power law. We assumear = arp, br+1 =
brp, allowing us to model surface-limited aggregation ind dimensions withp = 1−1/d. The
parameterθ = ac1/b remains a useful tool for classifying behaviour; the partition function
remainsQr = (a/b)r−1. The forward coefficients in the reduced model are

αr = aλ {[(r − 1)λ + 1][(r − 1)λ + 2] . . . [rλ]}p . (12)

For asymptotically largeλ these can be approximated by

logαr ∼ λ loga + pλ[log(rλ)− 1 + (1− r) log(1− 1

r
)] (13)

so for simplicity we shall takeαr = (aλprp)λ, which is asymptotically correct at larger and
differs only slightly at small values ofr. In the same manner, the backward rate coefficients
in the contracted model are given byβr+1 = (bλprp)λ.

Our coarse-graining contraction maps the set of models with power law rate coefficients
into itself. The coarse graining of power-law coefficients is only approximate whenp 6= 0.
However, the large-time asymptotics is qualitatively preserved, provided that a similar temporal
rescaling is performed as in equation (11) [9]. For any given model the contraction maps the
exponentp to λp. Following a contraction with largeλ, there are three cases to consider:
p = 0, and large positive or negativep. The reduced system also has a differentθ -parameter,
θ̃ = αrxλ1/βr+1 = θλ; thus the contraction mapsθ to θλ. The fixed pointsθ = 0, 1,∞ are,
therefore, of most interest to us. Combining this information, there are nine fixed points of the
coarse-grained contraction in(θ, p) parameter space, and these form the basis of the ensuing
analysis.
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Figure 1. The effect of our coarse-graining dynamical
renormalization on the two parametersθ, p in a Becker–
Döring model with rate coefficients which vary as a power
p of the cluster sizer, and with ratio of aggregation to
fragmentation ratesθ . The dots show the fixed points of
the mapping.

Figure 1 shows schematically the effect of the contraction. In phase plane terminology,
II has the form of an unstable node, I, III, V, VIII are saddle points (although they are at the
limits of the allowable domain, so only have trajectories on one side of the fixed point), and IV,
VI, VII, IX are stable nodes. Cases I, IV, VII all have partition functionQr = 0 for r > 2; in
cases II, V, VIII the partition function satisfiesQr = 1, whilst it is undefined in cases III, VI,
IX since in all these cases the fragmentation rate is zero. Having no equilibrium configuration,
these three cases approach a steady-state solution.

5. Effect of perturbations on the fixed points

There are two reasons for wanting to study noisy coefficients: firstly, any set of coefficients
will be subject to uncertainties, whether derived from experimental data or a mathematical
model. Secondly, systems are always susceptible to thermal (and in the models we study also
spatial) fluctuations which locally alter the rate coefficients. In both cases it is necessary to
know whether the models used are stable to minor variations in rate coefficients.

Firstly, we allow each reaction rate (ar, br+1 for r = 1, 2, . . .) to be independently
perturbed by a small-amplitude random fluctuation of the form

ar = arp(1 + νξr) br+1 = brp(1 + νχr+1) r = 1, 2, . . . (14)

with ν � 1 and ξr , χr+1 being independent random variables with zero mean satisfying
ξr , χr+1 = O(1). Such perturbations have no effect on the leading-order equilibrium or
steady-state solutions, or the large-time asymptotics.

A more interesting case is that in which the presence of noise in the rate coefficients is
allowed to alter their leading-order behaviour at larger. To examine these, we perturb the
forward and backward rate coefficients according to

ar = arp + δr br+1 = brp + εr+1 r = 1, 2, . . . (15)

whereδr , εr+1 have characteristic magnitudeν � 1. We now investigate the effect of such
perturbations on the equilibrium and steady-state solutions. Since we assumec1 = 1, the
partition function is the equilibrium solution. However, as described in [8], there are cases
where the equilibrium configuration formally has infinite mass and is hence not relevant; the
system then approaches one of the family of steady-state solutions in which all fluxes,Jr , are
equal. The steady-state flux is determined by requiring the most rapid decay incr asr →∞.
We now apply these ideas to the nine fixed points isolated earlier.
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Case I:p = 0, θ = 0. Since the non-perturbed case hasar = 0 for allr, the partition function
and the equilibrium solution are then zero; introducing perturbations removes this degeneracy,
and the equilibrium solution then becomes rapidly decaying inr, namelycr = O(νr−1), where
ν is a small parameter representing the typical size of perturbationsδr .

Case II:p = 0, θ = 1. In this case, introducing perturbations to the rates modifies the
partition function fromQr = 1 to

Qr ∼ 1 +
r∑
k=1

(δk − εk+1) (16)

so small-amplitude noise in the coefficients does not affect the leading-order behaviour of the
system.

Case III: p = 0, θ = ∞. In the absence of perturbations, there is no partition
function for this case; when present,Qr ∼

∏r−1
k=1(1/εk). However, this case converges

to a steady state rather than the equilibrium. When perturbations are included, the steady
flux is J = 1 + (δ1 − ε2) + O(ν2), which implies that the concentrations asymptote to
cr = 1 + (δ1− ε2 + εr+1− δr) +O(ν2).

Case IV:p � 1, θ = 0. As in case I, where noise is absent the partition function,Qr , is
zero forr > 2. Introducing noise removes this degeneracy, for smallν,Qr ∼ O(νr−1). Thus,
as in case I, the equilibrium solution rapidly decays withr.

Case V:p � 1, θ = 1. The balance of aggregation and fragmentation implies thatQr ≡ 1
in the case with no noise. The addition of noise to the rates alters this, to

Qr = 1 +
r−1∑
k=1

(
δk − εk+1

kp

)
+O(ν2) (17)

wherein we see that the alteration to the partition function only affects theO(ν) correction
term, leaving the leading-order behaviour (Qr ∼ 1) unaltered.

Note that ifp > 1 then the system does not evolve to the equilibrium solution, but instead
is attracted to a steady-state solution with more rapid decay in the limitr → ∞. Perturbing
the rate coefficients modifies this state to

cr = 1− 1

ζ(p)

r−1∑
k=1

1

kp
+
r−1∑
k=1

δk − εk+1− J1

kp
(18)

whereJ1 = (1/ζ(p))
∑∞

k=1(δk − εk+1)/k
p, which has constant fluxJ = 1/ζ(p) + J1.

Case VI:p � 1, θ = ∞. In this case the system approaches a steady-state solution, with
flux J = 1 + (δ1− 2−pε2) +O(ν2), implying

cr = 1

rp

[
1 +

(
δ1− 2−pε2 +

εr+1

(r + 1)p
− δr

rp

)]
. (19)

Thus noise in the rate coefficients has a minor effect on the solution.
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Case VII:p � −1, θ = 0. Formally, we have,

Qr =
r−1∏
k=1

δk

kp + εk+1
(20)

thus whenr = O(1),Qr = O(νr−1). However, whenr = rc := O(ν1/p)

cr ∼ [(ν1/p)!]−p exp(ν1/p logν). (21)

For r > rc, the perturbations have the same magnitude as the non-random part of the rate
coefficient, thus all subsequentQr values depend strongly on the perturbationsδk, εk and have
the order of magnitude given by (20).

Case VIII:p � −1, θ = 1. In the noiseless case this system converges to the equilibrium
solutioncr = 1. When noisy coefficients are introduced, this solution may cease to be valid
since at larger, the noise will be a leading-order effect. For smallr we construct an asymptotic
approximation to the modified equilibrium solution

cr = 1 +
r−1∑
k=1

k−p(δk − εk+1) +O(ν2). (22)

This approximation to the solution ceases to be valid at larger, wherecr = O(1). We expect
cr to remainO(1) for all values ofr, but to vary fromcr = 1 by significant amounts at larger.

Case IX:p � −1, θ = ∞. In the absence of noise, this case approaches the divergent
steady-statecr = r−p (with flux J = 1). For small-amplitude noise, a modified form of this
solution persists

cr = 1

rp

[
1 +

(
δ1− 2−pε2 − δr

rp
+

εr+1

(r + 1)p

)]
+O(ν2) (23)

however, this ceases to be valid whenr = O(ν1/p). For values ofr of this magnitude and
larger, perturbations to the rates cannot be neglected as they constitute a leading-order effect
in the system; andcr = O(1/ν) for all r > O(ν1/p).

6. Effect of perturbations on the coarse-grained reaction rates

In this section we examine the effect which the coarse-graining contraction procedure has on
the perturbed rate coefficients. In particular, we investigate whether small-amplitude noise in
the full description of the model maps to small-amplitude noise in the reduced description. On
inserting (15) into (6), (7) withT = λ−pλ, we obtain

αr = aλrpλ +1r βr+1 = bλrpλ +Er+1 (24)

where 1r,Er+1 represent the perturbations in the contracted descriptions and depend,
respectively, on theδk, εk. For each of the nine fixed points (in whicha, b = 0, 1) we calculate
the leading-order form of this dependence.

Case I:p = 0, θ = 0. Sincea = 0,b = 1, we haveαr = 1r = O(νλ), andβr+1 = 1+O(ν).
Thus following contraction, the perturbations remain small.

Case II:p = 0, θ = 1. Following the coarse-graining contraction, the reaction rates are
given byαr, βr = 1 +O(ν). So the perturbations remain the same order of magnitude in the
contracted model as in the full.
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Case III:p = 0, θ = ∞. The domination of aggregation is not altered by the presence of
small noise, sinceαr = 1 +O(ν) andβr = O(ν).

Case IV:p � 1, θ = 0. The contracted rates are given byαr = O(νλ)andβr+1 = rpλ+O(ν);
in the latter, we have made the approximation (13) valid for larger. The system remains
fragmentation dominated.

Case V:p � 1, θ = 1. For larger, the rates in the contracted system have the form
αr, βr+1 = rpλ +O(ν) Thus the noise will not cause any change to the leading-order form of
the rate coefficients.

Case VI:p � 1, θ = ∞. The domination of aggregation persists, since following contraction
αr = rpλ +O(ν) whilst βr+1 = O(νλ).

Cases VII–IX:p � −1. The formulae for1r,Er+1 in these cases are identical to cases IV–
VI, respectively. However, herep < 0 so that at large cluster sizesr, the perturbations will be
of the same order of magnitude as the deterministic part of the rate coefficients. This occurs
whenr = O(ν1/p).

In cases I–VI, the noise indeed remains small in the contracted description of the model
hence these may be termed universality classes, whilst in cases VII–IX, this is not the case.
In these last three cases, at large aggregation numbers, the noise in the full description is not
small relative to the power-law component of the rate coefficient, and this is reflected in the
contracted model. In cases VII–IX perturbations to the power-law rate coefficients play a major
role in the kinetics at large cluster sizesr, as they do in the full model. Thus cases VII–IX
may be termed universality classes if the added noise decays faster than the given power law
asr →∞.

7. Conclusions

We have applied renormalization ideas to the Becker–Döring model of cluster formation. A
novel feature of this work is that it is the cluster aggregation space which is rescaled, rather than
a spatial dimension. Moreover, a dynamical renormalization is required to correctly maintain
the timescales of the growth and fragmentation processes following the rescaling of aggregation
space. In the case of the power-law model, nine fixed points of the renormalization procedure
have been identified and analysed in greater detail, quantitatively providing nine types of
large-time asymptotics which may be exhibited by the system. Five of these systems tend to
equilibrium, and the remaining four to steady-state solutions. The pure fragmentation cases
(I, IV, VII) all tend to the trivial equilibriumxr = δr,1.

In cases I, IV, VII, a diffusive wavefront invades the large-r region where cluster
concentrations are zero, leaving the equilibrium solution behind the wavefront. In cases II,
V, VIII the equilibrium solution is approached by purely diffusive mechanisms, no advection
being present in the system. Ifp > 1 in case V, then the system approaches a steady-state
solution rather than the equilibrium solution, since the steady state has faster decay at large
aggregation numbers. This case is thus similar to cases III, VI, IX, all of which approach steady
states rather than true thermodynamic equilibrium. However, their large-time asymptotics are
more akin to cases I, IV, VII, being dominated by a diffusive wave which moves into the large
r-domain.
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Thus, for the first time we have identified universality classes present in the Becker–Döring
equations, in that any system with power-law coefficients can be classified into one of the nine
cases which correspond to fixed points of our contraction, and this qualitatively determines the
system’s large-time behaviour. In physical terms, our demonstration that a renormalization
structure underpins the Becker–Döring equations carries with it the implication that universal
behaviour can be identified in the approach of such systems to equilibrium or steady states.
In a forthcoming paper [9], we shall discuss the temporal behaviour in detail. In the case of
the Becker–D̈oring equations, this is a very welcome development, since it dispenses with
the need to specify in full detail all the generally unknown fine-grained rate coefficients. For
example the partition function is left unchanged by the coarse graining, as is the equilibrium
solution and the steady-state solution. At the end of section 3 we showed that the large-time
behaviour of both the density and the Lyapunov function (free energy) were left invariant by
our coarse-grain rescaling. It is perhaps worth pointing out here, however, that consideration
of the asymptotic limit implied by the renormalization procedure is not necessarily always
appropriate, e.g. for systems in which it is crucial to retain some level of fine-grained detail in
order to properly capture the dynamics.

The successful application of the renormalization techniques reported here opens the way
for a study of generalized Becker–Döring equations using similar methods; it also furnishes a
firm theoretical foundation for the analyses we have previously given of various generalizations
of the basic Becker–D̈oring theory to a wide range of processes of physicochemical interest,
including micelle and vesicle formation and self-reproduction [3, 4], generalized nucleation
and growth phenomena [7], and macromolecular sequence selection in biopolymers [10].
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